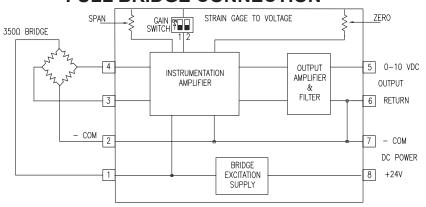


Features:

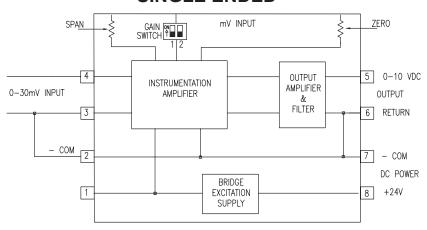
- Low Cost
- Load Cell or Single Ended Application
- 4 Individual Channels
- 0-30mVDC Input per Channel
- 0-10VDC Output per Channel
- Adjustable Excitation Supply

Description:

The unit is a 4 channel DC powered module designed for load cell, strain gage, or single ended use. The unit consists of 4 individual amplifier channels and an adjustable excitation supply. Each channel contains a precision instrumentation amplifier with individual Zero and Span adjustments, and a filtered 0-10VDC output. The 0 to 30mV input range of each channel makes them compatible with most strain gage based load cell or pressure transducer outputs. The excitation supply is designed to drive four 350 ohm load cells and is adjustable from 5 to 10 VDC.


Option:

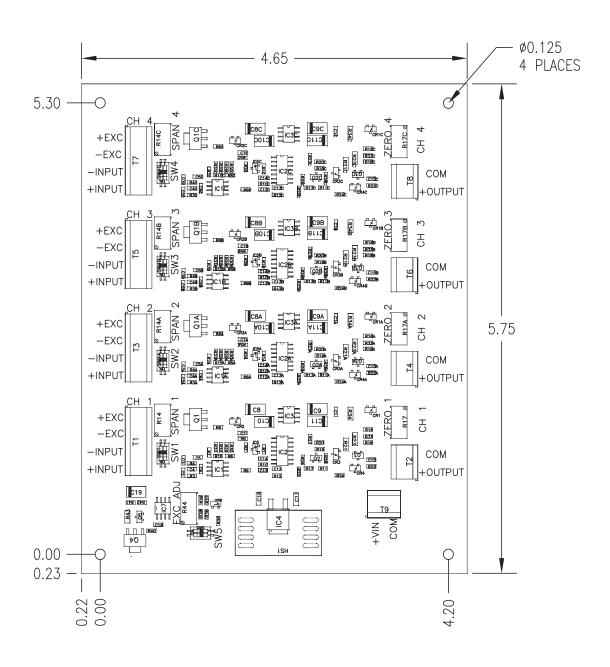
Add: (-W4) to model number to be mounted in a NEMA enclosure.


Amplifier (per channel)		
Gain Adjustment Range Input for 10VDC Output	333 to 1000 10mV to 30mV	
Linearity: 0 to 10VDC Out	±0.01%	
Zero Adjust	30% Max Output	
Temperature Coefficient	0.05% / °C	
Input Offset Voltage Temperature Coefficient	±70μV 0.7μV / °C	
Common Mode Voltage	0 to +5 VDC	
Common Mode Rejection - DC	100 dB	
Input Noise 0.1Hz to 10Hz	0.3µV pp Typ	
Output (per channel)		
Output Range	0 to +10VDC	
Load Current	5mA Max	
Frequency Response 2 Pole Filter	DC to 10Hz	
Total RMS Gain Temperature Coefficient	0.007% / °C	

Bridge Supply			
Adjustable Output	5-10 VDC		
Temperature Coefficient	0.05% / °C		
Load Current	115 mA Max		
Power Requirements			
Voltage	18 to 26 VDC		
Input Current (4 - 350 Ohm Bridges)	155 mA		
Environment			
Operating Temperature	0°C to +55°C		
Storage Temperature	-40°C to +80°C		
Weight	3.4 oz. (97g)		
Agency Approval			
UL	UL508, C22.2 Pending		
Size			
Board Assembly	5.75"H x 4.65"W		
Optional Nema Enclosure	8"H x 6"W x 3.50"D		

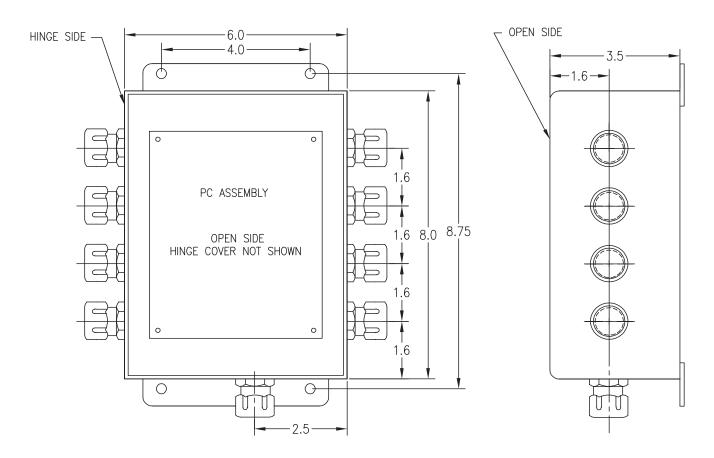
FULL BRIDGE CONNECTION

SINGLE ENDED


Getting Started

- 1. Hook Up Procedure
 - A. Connect the +out of the load cell to the +INPUT of the channel being used.
 - B. Connect the -out of the load cell to the -INPUT of the channel being used.
 - C. Connect the +excitation of the load cell to +EXCITATION, of the channel being used.
 - D. Connect the -excitation of the load cell to -EXCITATION, of the channel being used.
 - E. Repeat steps A thru D for each channel
 - F. Connect the +24 VDC power supply to +Vin and COM.
- 2. Turn on Procedure
 - A. Verify that the hook up procedure is complete.
 - B. Turn on the +24 VDC power source connected to the
- 3. Calibration Procedure
 - A. Jumper the +INPUT and the -INPUT terminals of the channel to be adjusted.
 - B. Check the Gain Switch Table, and set Switches for the channel being adjusted, to the expected full scale output of the load cell. (i.e. SW1-1 and SW1-2 for Channel 1.)
 - C. Connect a voltmeter across the output +OUTPUT and COM terminals of the channel being adjusted.

- D. Adjust the Zero Adjustment potentiometer of the channel being adjusted for the desired output.
- E. Remove the jumper from the +INPUT and -INPUT terminals.
- F. With no load on the load cell, of the channel being adjusted, readjust the no load output.
- G. Apply a known load to the load cell; of the channel being adjusted, in most cases it would be 100% of full scale.
- H. Adjust the SPAN ADJUSTMENT potentiometer, of the channel being adjusted, for the desired full scale output.
- Repeat steps F thru H until the desired settings are obtained.
- Repeat the Calibration procedure for each channel being adjusted.


SW1-1 SW2-1 SW3-1 SW4-1	SW1-2 SW2-2 SW3-2 SW4-2	FULL SCALE LOAD CELL INPUT	
OFF	OFF	30 mV	
ON	OFF	20 mV	
ON	ON	10 mV	
SW5-1	SW5-2	EXCITATION SUPPLY	
OFF	OFF	10 VDC	
OFF	ON	5 VDC	

Mechanical tolerances unless otherwise noted:

X.XX dimensions ±0.020 inches X.XXX dimensions ±0.005 inches

Size	
Board Assembly	5.75"H x 4.65"W

Mechanical tolerances unless otherwise noted:

X.XX dimensions ± 0.020 inches X.XXX dimensions ± 0.005 inches

Size	
With Optional NEMA Enclosure	8"H x 6"W x 3.50"D