sales@calex.com +1 (925) 687-4411

IHC Series, 600-Watt

AC-DC Harsh Environment Industrial Power Supplies

The 600-Watt IHC is a new series of AC-DC harsh environment industrial power supplies. The IHC series is aimed at ruggedized and special applications that require operation in extreme industrial environmental conditions such as, elevators, external road signs, electrolysis equipment, food processing and other outdoor applications.

The product enclosure is an IP67 sealed convection/ conduction cooled assembly that can be baseplate mounted to a thermal (cold) plate or natural convection cooled1.

Intended for ease of connection, the I/O and signal connectors are ruggedized to allow operation over a wide -40°C to +85°C baseplate operating temperature range.

The output overload protection employs a constant current characteristic that allows use with high transient capacitive and inductive loads found in applications such as motor drives, incandescent lamps, LED drivers and battery charging sources. A BMU/BMS is required if used as a constant current source for Li-ion battery charging.

Safety

- Safety acc. to IEC/EN/UL 62368-1 (pending)
- CE Marking to LVD 2014/35/EU

Features

- Universal AC input 100 to 240Vac
- Single 12V, 24V and 48V output
- -5%/+15% output voltage adjustment
- Delivers up to 600W conduction cooled, no fan at +85°C max
- High efficiency of 95%
- Active PFC meets EN61000-3-2 class A
- Active inrush current protection
- DC output via studs; AC input and signals each via circular connectors
- Droop characteristic current sharing
- True zero load output operation; no minimum load requirement
- MTBF exceeds 1.4M hours (Telcordia SR-332, Issue 3, M1C3, +40°C).
- RoHS3 Directive 2015/863 compliant
- Five-year standard warranty

Mechanical

- Compact high-density design with excellent thermal performance
- IP67
- Overall dimensions (excluding connectors and mounting feature):
- 233.7mm x 128.1mm x 39.9mm, 9.20" x 5.04" x 1.57"

Table of Contents

Operational Overview2
Electrical Characteristics
Current Limit Curve4
Output Power Derating Curve
EMI Performance

out model)	.15
	17

AC-DC Harsh Environment Industrial Power Supplies

Operational Overview

	Voltage (VAC	2)	Cu	rrent (VD)C)	Efficiency			Root Model	
I	nput	Output	Inp	ut	Output		Noise		Load	
Vin Nom	Vin Range	Vout Nom	No Load (mA)	Max Load (Arms)	lo Max (A)	Typical at Max Load 230 VAC (%)	Typical (mVp-p)	Transient Max (%)	Max. C External (µF)	Basic Model without option
600	90 - 264	12	15	8.0	50	95.5	120	±5	6000	ACS12.600IHC
600	90 - 264	12	15	8.0	50	95.5	120	±5	6000	ACS12.600IHC-R
600	90 - 264	24	15	8.0	25	95	240	±5	1200	ACS24.600IHC
600	90 - 264	24	15	8.0	25	95	240	±5	1200	ACS24.600IHC-R
600	90 - 264	48	15	8.0	12.5	93.5	480	±5	500	ACS48.600IHC
600	90 - 264	48	15	8.0	12.5	93.5	480	±5	500	ACS48.600IHC-R

Optional ORing function available for redundancy.

Add "-R" to the part number when ordering. ie. ACS12.600IHC-R.

AC-DC Harsh Environment Industrial Power Supplies

Electrical Characteristics

General Conditions: All specifications are at full load with nominal input and output voltage and T_A +25°C unless otherwise noted.

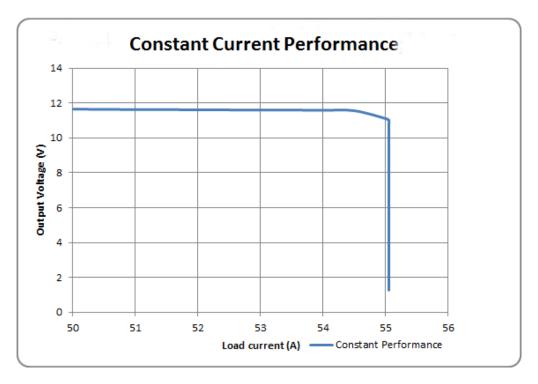
	Input Characteristics										
Parameter	Conditions	Min	Nom	Max	Units						
Input voltage AC Operating Range	Single Phase	90	100-240	264	Vac						
Input Frequency		47	50/60	63	Hz						
AC Source Voltage	Input Start Up Threshold	75		90	Vac						
AC Source voltage	Input Shutdown Threshold	65		80	Vac						
Maximum input current	Vin = 90VAC; Full Load (600W FL)			8.0	Arms						
Inrush Current	230Vac,			40	Apk						
Power Factor	At 115/230Vac. 100% load	0.95			W/VA						
Hold-up Time	90Vac; 600W	16			msec						
Typical Efficiency of IHC Models	Full Load; 230Vac		95		%						
No Load Input Current	Output on, lout = 0 (burst mode)		0.100	0.15	А						

Output Characteristics (All Models Except Where Noted)										
Parameter	Conditions	Min	Nom	Max	Units					
Overall Regulation	Main Output1			±5						
Output Adjustment	- Main Output ¹	-5		+15	%					
Minimum Load Capability	Stable Operation	0			А					
Output Ripple	10% Load to Full Load ^{2,3}			1%	mVP-P					
	ACS12.600IHC			6000						
Load Capacitance	ACS24.600IHC			1200	μF					
	ACS48.600IHC			500	μι					
Transient Response ³	50% load step,(25-75%) 1A/µsec slew rate and min 10% load			± 5	%					
Settling Time	Settling Time to 1% of Nominal		2		msec					
Turn on Delay	After application of input power, PS_ON enabled, 90Vac Full Load			1	sec					
Output Voltage Rise	From PS_ON enable; AC source present		500		msec					

1 Overall regulation includes "droop" regulation over the zero to full load range; initial setting, line regulation, and temperature drift; output adjustment is a percentage of the nominal set voltage.

2 Ripple and noise are measured with 0.1µF ceramic capacitor and 10µF tantalum capacitor. A short coaxial cable with 50 Ohm termination is used. When load is less than 10% of full load, ripple and noise may increase up to 5% mVp-p.

3 Requires 1 second minimum time between consecutive transients and requires 10% minimum load.


Protection Characteristics									
Parameter Conditions Min Nom Max Unit									
Over Voltage Protection	Output latching (re-cycle AC input)	120		135	%				
Overload and Short Circuit Protection	Constant Current	105		120	%Amax				
Over Temperature Protection	Baseplate temperature		90		°C				

AC-DC Harsh Environment Industrial Power Supplies

Current Limit Curve

The Constant Current characteristic of the 12V model is shown in the following curve below. This feature enables the 600W IHC-series converter to effectively start into any application demanding large inrush current, including motors, solenoids, large capacitive loads, incandescent lamps, etc.

Notes:

1. The above curve demonstrates the characteristics of the ACS12.600IHC by loading the output with an incremental load current above its rated full load capability (constant resistance equivalent to ~0.5Adc increments; converter in Constant Voltage, CV operation).

2. If the load resistance is further decreased, the resultant current will remain constant. The constant current overload remains within the demonstrated limit, irrespective of the adjustment of VNOM

3. The End User must rate all parts interconnection in their system in accordance to this constant current (CC) mode.

AC-DC Harsh Environment Industrial Power Supplies

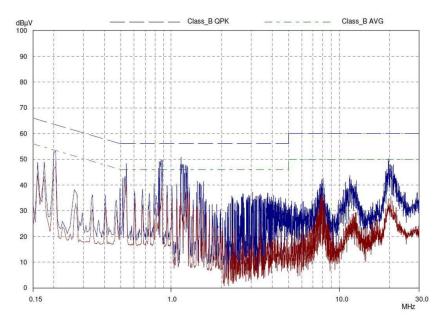
	Environmental Characteristics				
Parameter	Conditions	Min	Тур.	Max	Units
Storage Temperature Range	Up to 10000m -40 85				٥C
Operating Baseplate Temperature	No Derating with AC Line Voltage see curves below	-40		85	°C
Range	Start up; At 100Vac minimum input	-40		85	°C
Operating Humidity	IEC 60068-2-30; +25°C to 55°C: relative humidity	10		93	%
Operating Altitude		-200		5000	m
MTBF	Telcordia SR-332 Issue 3; M1C3 @ 40°C		1.4M		Hours
Shock	IEC 60068-2-27, Test, 30g, 11msec, Half-sine 3	3 shocks per a	axis 6 axis		Complies
Operational Vibration	IEC 60068-2-64; Sine sweep; 5-150Hz, 2g; Ran	ndom vibratio	on, 5-500Hz,	1.11g	Complies
Safety – Audio/video, equip. for information and communication technology	IEC/EN/UL62368-1 CE Marking per LVD 2014/35/EU				
Ingress Protection Rating	IP67				
Fuses	Single (Line) Fuse; 12.5A; Fast Acting; 250V (No	n-Replaceab	le Internal)		
Outside Dimensions	233.7mm x 128.1mm x 39.9mm (9.20" x 5.04"	x 1.57")			
Weight (typ.)	1.85 / 4.08				kg / lbs.

Isolation Characteristics									
Parameter	Conditions	Min	Тур	Max	Units				
Isolation test voltage	Primary to Chassis	2500							
	Primary to Secondary	4242			Vdc				
	Secondary to Chassis	1500			Vuc				
Earth Leakage Current (Under Normal Conditions)	264Vac, 60Hz, 25°C		3	3.5	mA				

Current Sharing Droop Feature and ORing Option							
Model Number	Description						
Refer to ACAN-xx for additional details	Output current sharing is achieved by the "droop" method. The nominal output voltage is set at 50% load and the output voltage increases/decreases ±3% approx. with change in load current. This does not include any tolerance for line, temp., long-term stability etc. Startup of two (or more) power supplies in parallel is not internally synchronized. If the total combined output power exceeds 600W, external synchronization must be provided by the system using a common PS_ON signal. To compensate for a ±10% full load current sharing accuracy, as well as for the output voltage droop reduction, the total combined output power must be reduced/derated by at least 15% for a reliable parallel operation. ORing Option: The option with ORING protection is recommended, especially for redundant operation (see Application notes, ACAN-xx for additional details); consult factory for details.						

AC-DC Harsh Environment Industrial Power Supplies

Output Power Derating Curve



AC-DC Harsh Environment Industrial Power Supplies

EMI Performance

Emissions and Immunity									
Characteristic	Standard	Compliance							
Input Current Harmonics	IEC/EN 61000-3-2	Class A Limits apply							
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies							
Conducted Emissions	EN 55032	Class B							
	FCC Part 15								
Radiated Emissions	CISPR 22 – 3 meters	Class A							
	FCC 15.109 – 3 meters								
ESD Immunity	IEC/EN 61000-4-2	±8kV Contact, ±15kV air discharge, Criteria A performance							
Radiated Field Immunity	IEC/EN 61000-4-3	10V/m, 1kHz, 80% AM, 80MHz to 1GHz Criteria A							
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	2kV; 100kHz repetition, Criteria A Performance							
Surge Immunity	IEC/EN 61000-4-5	Common Mode: 2kV 12 Ohm, Diff. Mode: 1kV, 2Ohm), 1.2/50µs (8/20µs), Criteria A Performance							
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3, 10V/m, Criteria A Performance							
Magnetic Field Immunity	IEC/EN 61000-4-8	Level 3, Criterion A							
Voltage dips, interruptions	IEC/EN 61000-4-11	Level 3; Criteria A performance for all dips @230Vac input. Criteria B performance for voltage interruptions.							

Typical conducted EMI for ASC24.600IHC at 230Vac in, 24A output load, PK (blue) and AV (brown):

AC-DC Harsh Environment Industrial Power Supplies

	Status and Control Signals									
Parameter	Connector and Pin Assignment	Operating conditions								
AC_OK AC_OK_GND	J2 Pin 1 J2 Pin 2	 The signal output is and uncommitted opto- isolated bi-polar transistor. The transistor is driven "on" (saturated) when the incoming AC source is available and within acceptable limits. The transistor is driven "off" to indicate loss (or out of range) of the incoming AC source. There shall be a minimum of 0.5ms pre- warning time prior to the DC output falling out of regulation limits. An external pull up/pull down resistor is required (deployment is End User dependent). The maximum allowable sink current is 2mAdc and the maximum open circuit voltage is 20Vdc. 								
PS_ON	J2 Pin 6	The PS_ON signal is intended to turn on (enable)/turn off (disable) the Main DC output. The default is that the signal is unterminated; in this condition, the Main Output shall turn on when the incoming AC source is applied. Conversely if it is required to turn "off" (disable) the Main output the PS_ON shall be pulled low, The signal is internally pulled up to 3.3Vdc via a 3.3Kohm resistor (sink current 1mA) to SGND.								
SGND	J2 Pin 4	Connection to signal ground within power module to provide return for PS_ON signals and trim function								
TRIM_UP	J2 Pin 3	Providing trim up function by connecting external resistor between TRIM pin and TRIM_UP pin								
TRIM	J2 Pin 5	An analogue DC input from a fixed external resistor that shall "adjust" the Main Output within the range of VNOM -5% to VNOM+15%. The external resistor connected between TRIM pin and TRIM_UP pin to adjust the Main Output within the range VNOM to VNOM+15%; The external resistor connected between TRIM pin to SGND pin to adjust the Main Output within the range VNOM -5% to VNOM; The external resistor value shall vary according to the following table to achieve the adjustment range:								

AC-DC Harsh Environment Industrial Power Supplies

Voltage Adjustment Resistor Values

Trim Down:

Use this equation for an external TRIM resistor at J2 connector to decrease VNOM:

$$Rdn(x) := \frac{-240 \cdot x + 15.5}{0.2 + 48 \cdot x} \cdot 10^{3}$$

Trim Up:

Use this equation for an external TRIM resistor at J2 connector to increase VNOM:

$$Rup(x) := \frac{Vout - 8 \cdot x - 1.75}{0.2 + 16 \cdot x} \cdot 10^{4} - 20 \times 10^{3}$$

Note: Vout is the desired output voltage. It is 11.4V min (12V model), 22.8V min (24V model), and 45.6V min (48V model) for decreasing Vout. It is 13.8V max (12V model), 27.6V max (24V model), and 55.2V max (48V model) for increasing Vout). "x" = Is the desired output voltage delta value (i.e. 0 to 0.05 for decreasing Vout and 0 to 0.15 for increasing Vout).

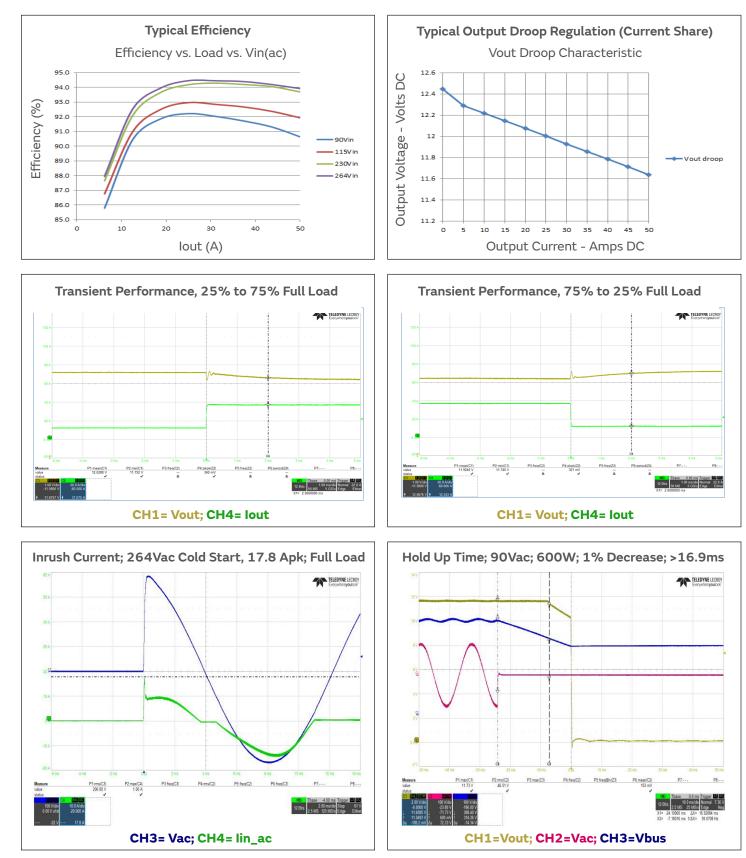
Typical Trim Resistor Value for ACS12.600IHC

	IHC; TYPICAL RESISTOR "TRIM DOWN" VALUES; 50% FULL LOAD													
Trim Ratio (%)	0.00	-0.21	-0.63	-1.04	-1.46	-1.88	-2.29	-2.71	-3.13	-3.54	-3.96	-4.38	-4.79	-5.00
Ideal VOUT(V)	12.00	11.98	11.93	11.88	11.83	11.78	11.73	11.68	11.63	11.58	11.53	11.48	11.43	11.40
R_TRIM (kΩ)	77.50	50.00	28.00	18.57	13.33	10.00	7.69	6.00	4.71	3.68	2.86	2.17	1.60	1.35
			IH	C; TYPIC	AL RESIS	STOR "TF	RIM UP" \	/ALUES;	50% FU	LL LOAD				
Trim Ratio (%)	0	0.63	1.88	3.13	4.38	5.63	6.88	8.13	9.38	10.63	11.88	13.13	14.38	15.00
Ideal VOUT(V)	12.00	12.08	12.23	12.38	12.53	12.68	12.83	12.98	13.13	13.28	13.43	13.58	13.73	13.80
R_TRIM (kΩ)	492.50	322.50	186.50	128.21	95.83	75.23	60.96	50.50	42.50	36.18	31.07	26.85	23.30	21.73

Typical Trim Resistor Value for ACS24.600IHC

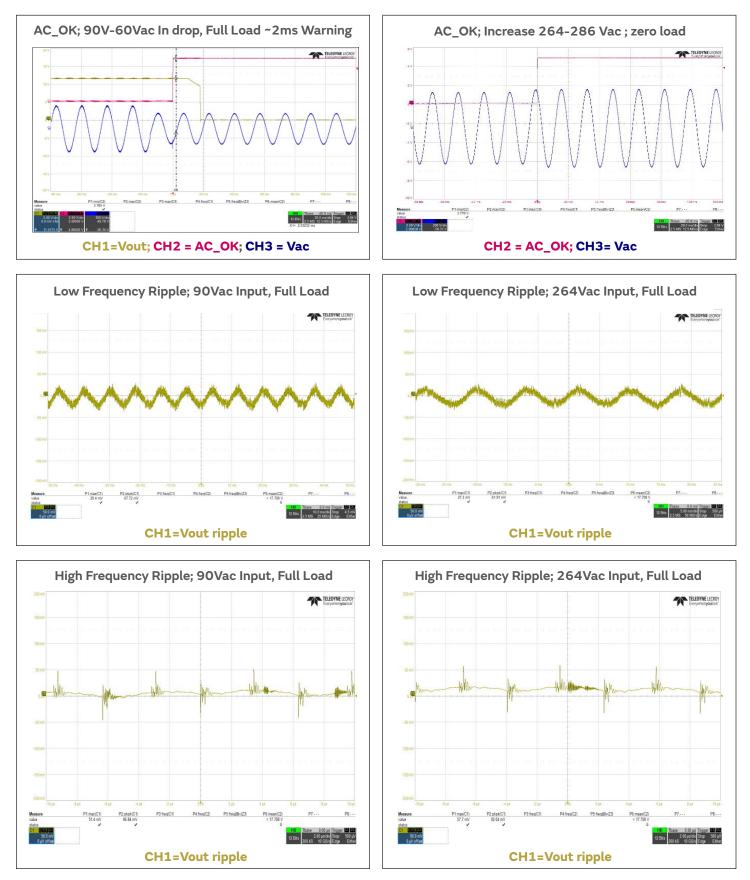
	IHC; TYPICAL RESISTOR "TRIM DOWN" VALUES; 50% FULL LOAD													
Trim Ratio (%)	0.00	-0.21	-0.63	-1.04	-1.46	-1.88	-2.29	-2.71	-3.13	-3.54	-3.96	-4.38	-4.79	-5.00
Ideal VOUT(V)	24.00	23.95	23.85	23.75	23.65	23.55	23.45	23.35	23.25	23.15	23.05	22.95	22.85	22.80
R_TRIM (kΩ)	77.50	50.00	28.00	18.57	13.33	10.00	7.69	6.00	4.71	3.68	2.86	2.17	1.60	1.35
	IHC; TYPICAL RESISTOR "TRIM UP" VALUES; 50% FULL LOAD													
Trim Ratio (%)	0.00	0.63	1.88	3.13	4.38	5.63	6.88	8.13	9.38	10.63	11.88	13.13	14.38	15.00
Ideal VOUT(V)	24.00	24.15	24.45	24.75	25.05	25.35	25.65	25.95	26.25	26.55	26.85	27.15	27.45	27.60
R_TRIM (kΩ)	1092.5	725.0	431.0	305.0	235.0	190.45	159.62	137.0	119.71	106.05	95.0	85.87	78.20	74.81

AC-DC Harsh Environment Industrial Power Supplies

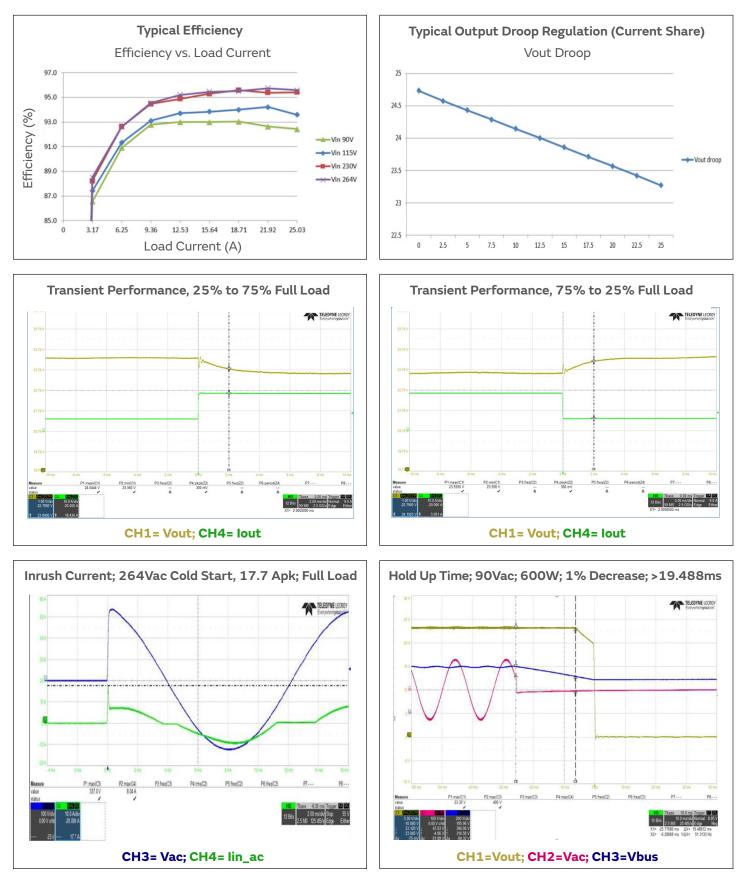

Typical Trim Resistor Value for ACS48.600IHC

	IHC; TYPICAL RESISTOR "TRIM DOWN" VALUES; 50% FULL LOAD													
Trim Ratio (%)	0.00	-0.21	-0.63	-1.04	-1.46	-1.88	-2.29	-2.71	-3.13	-3.54	-3.96	-4.38	-4.79	-5.00
Ideal VOUT(V)	48.00	47.90	47.70	47.50	47.30	47.10	46.90	46.70	46.50	46.30	46.10	45.90	45.70	45.60
R_TRIM (kΩ)	77.50	50.00	28.00	18.57	13.33	10.00	7.69	6.00	4.71	3.68	2.86	2.17	1.60	1.35
	IHC; TYPICAL RESISTOR "TRIM UP" VALUES; 50% FULL LOAD													
Trim Ratio (%)	0.00	0.63	1.88	3.13	4.38	5.63	6.88	8.13	9.38	10.63	11.88	13.13	14.38	15.00
Ideal VOUT(V)	48.00	48.30	48.90	49.50	50.10	50.70	51.30	51.90	52.50	53.10	53.70	54.30	54.90	55.20
R_TRIM (kΩ)	2292.5	1530.0	920.0	658.6	513.3	420.9	356.9	310.0	274.1	245.8	222.9	204.0	188.0	181.0

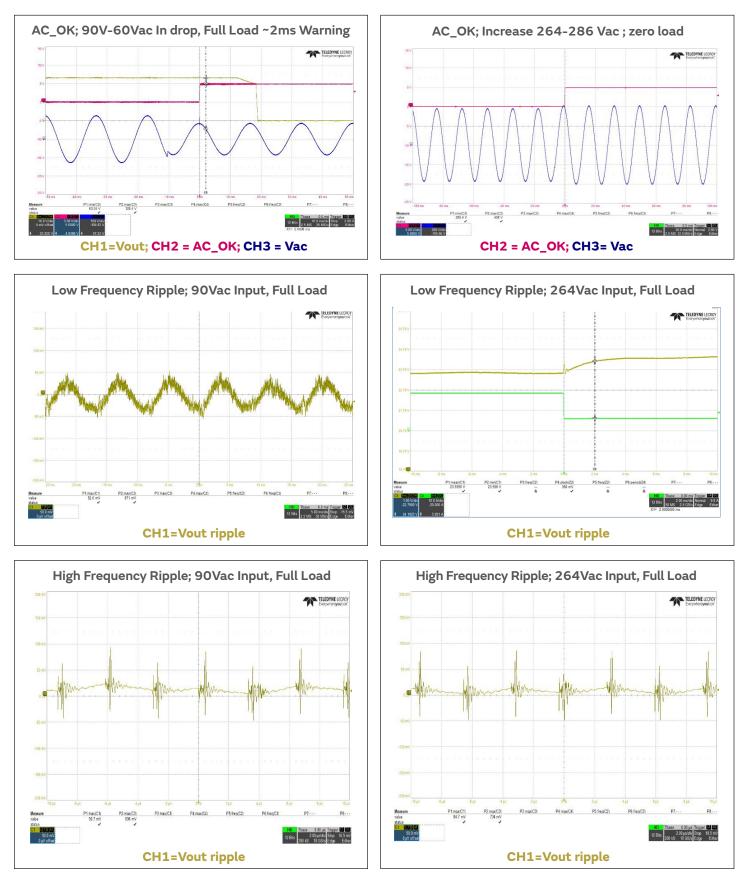
AC-DC Harsh Environment Industrial Power Supplies


ACS12.600IHC Typical Performance (12Vout model)

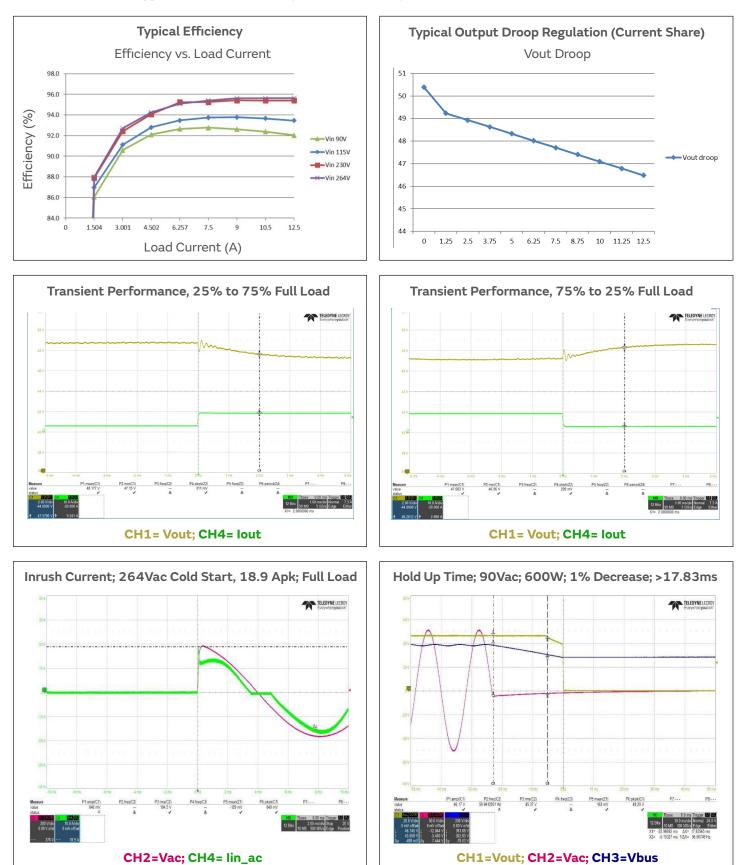
AC-DC Harsh Environment Industrial Power Supplies


ACS12.600IHC Typical Performance (12Vout cont.)

AC-DC Harsh Environment Industrial Power Supplies

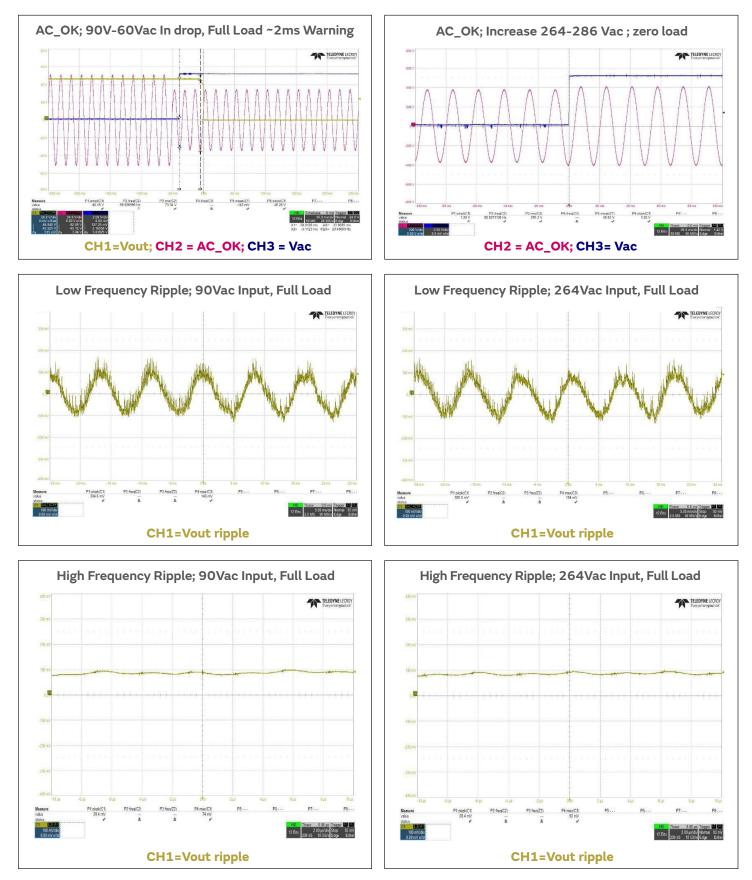

ACS24.600IHC Typical Performance (24Vout model)

AC-DC Harsh Environment Industrial Power Supplies


ACS24.600IHC Typical Performance (24Vout cont.)

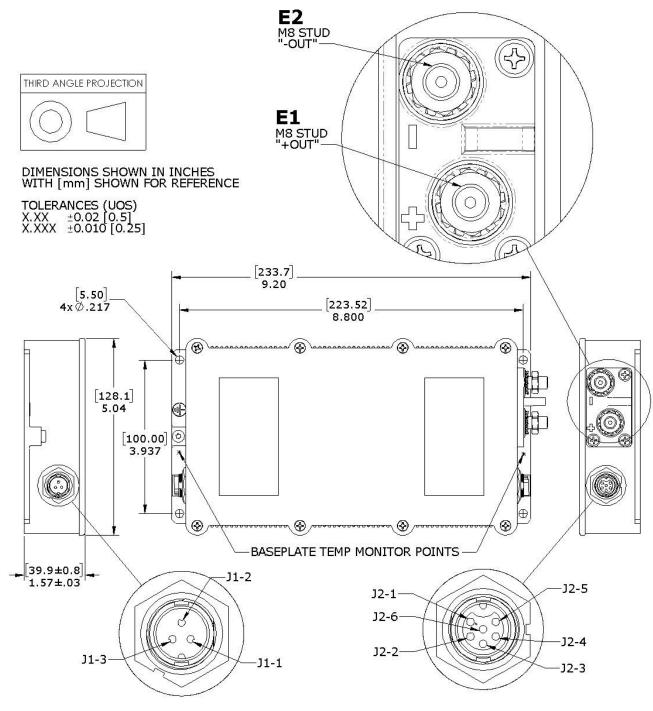
AC-DC Harsh Environment Industrial Power Supplies

ACS48.600IHC Typical Performance (48Vout model)



Calex Manufacturing Company, Inc., a division of Murata Power Solutions

AC-DC Harsh Environment Industrial Power Supplies


ACS48.600IHC Typical Performance (48Vout cont.)

AC-DC Harsh Environment Industrial Power Supplies

Mechanical Data

J1 INPUT							
Switchcraft #7382-3PG-300							
PIN #	FUNCTION						
1	AC_HI						
2	AC_LO						
3	GND						

J2 SIGNAL							
Switchcraft #7282-6SG-300							
PIN #	FUNCTION						
1	AC_OK						
2	AC OK GND						
3	TRIM_UP						
4	S GND						
5	TRIM						
6	PS_ON						

AC-DC Harsh Environment Industrial Power Supplies

INPUT AND SIGNAL CONNECTORS incl. MATING COUNTERPARTS1									
Connector	PIN	Description	PSU Module	Mating Connector					
	1	AC_HI (Line)		Switchcraft 6382-3SG-522					
Input Connector J1	2	AC_LO (Neutral)	Switchcraft 7382-3PG-300						
	3	GND/PE (Ground, Protective Earth)	-						
	1	AC_OK		Switchcraft 6282-6PG-522					
	2	AC_OK_GND							
Simul Ocean star 12	3	TRIM_UP	Cuit-h-mft 7202 CC0 200						
Signal Connector J2	4	S GND	Switchcraft 7282-6SG-300						
	5	TRIM	_						
	6	PS_ON	_						

1 In order to meet IP67 requirement, the mating input and signal connectors must be in place and securely connected.

	OUTPUT CONNECTIONS									
Connector	PIN#	Description	Recommended Cable Gauge (minimum)	Stud Terminal Thread	Connector Image					
	E1	+DC_OUT (positive)		M8 X 1.25 PHOSPHOR BRONZE, TIN PLATED OUTPUT	[26.2] 1.03 2.1.03					
Studs	E2	-DC_OUT (negative)	6AWG/13.3mm2	STUDS (HEX NUTS AND EXT TOOTH LOCKWASHERS SUPPLIED)	$ \begin{bmatrix} [27.6] \\ 1.08 \\ \hline \\ 1.08 \\ \hline \\ 1.08 \\ \hline \\ [19.6] \\ .77 \\ \end{bmatrix} \begin{bmatrix} [Neg 001) \\ [Neg 001) \\ .25 \\ $					

© Calex Manufacturing Company, Inc., a division of Murata Power Solutions • +1 (925) 687-4411 • (800) 542-3355 • e-mail: sales@calex.com

Calex Manufacturing, Inc. ("Calex") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify Calex, its affiliated companies, and its representatives against any damages arising out of the use of any Calex products in safety-critical applications. Specifications are subject to change without notice.